WIPI-1 Positive Autophagosome-Like Vesicles Entrap Pathogenic Staphylococcus aureus for Lysosomal Degradation

نویسندگان

  • Mario Mauthe
  • Wenqi Yu
  • Oleg Krut
  • Martin Krönke
  • Friedrich Götz
  • Horst Robenek
  • Tassula Proikas-Cezanne
چکیده

Invading pathogens provoke the autophagic machinery and, in a process termed xenophagy, the host cell survives because autophagy is employed as a safeguard for pathogens that escaped phagosomes. However, some pathogens can manipulate the autophagic pathway and replicate within the niche of generated autophagosome-like vesicles. By automated fluorescence-based high content analyses, we demonstrate that Staphylococcus aureus strains (USA300, HG001, SA113) stimulate autophagy and become entrapped in intracellular PtdIns(3)P-enriched vesicles that are decorated with human WIPI-1, an essential PtdIns(3)P effector of canonical autophagy and membrane protein of both phagophores and autophagosomes. Further, agr-positive S. aureus (USA300, HG001) strains were more efficiently entrapped in WIPI-1 positive autophagosome-like vesicles when compared to agr-negative cells (SA113). By confocal and electron microscopy we provide evidence that single- and multiple-Staphylococci entrapped undergo cell division. Moreover, the number of WIPI-1 positive autophagosome-like vesicles entrapping Staphylococci significantly increased upon (i) lysosomal inhibition by bafilomycin A(1) and (ii) blocking PIKfyve-mediated PtdIns(3,5)P(2) generation by YM201636. In summary, our results provide evidence that the PtdIns(3)P effector function of WIPI-1 is utilized during xenophagy of Staphylococcus aureus. We suggest that invading S. aureus cells become entrapped in autophagosome-like WIPI-1 positive vesicles targeted for lysosomal degradation in nonprofessional host cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

WIPI β-propellers in autophagy-related diseases and longevity.

Autophagy is a catabolic pathway in which the cell sequesters cytoplasmic material, including long-lived proteins, lipids and organelles, in specialized double-membrane vesicles, called autophagosomes. Subsequently, autophagosomes communicate with the lysosomal compartment and acquire acidic hydrolases for final cargo degradation. This process of partial self-eating secures the survival of euka...

متن کامل

Defining regulatory and phosphoinositide-binding sites in the human WIPI-1 β-propeller responsible for autophagosomal membrane localization downstream of mTORC1 inhibition

UNLABELLED BACKGROUND Autophagy is a cytoprotective, lysosomal degradation system regulated upon induced phosphatidylinositol 3-phosphate (PtdIns(3)P) generation by phosphatidylinositol 3-kinase class III (PtdIns3KC3) downstream of mTORC1 inhibition. The human PtdIns(3)P-binding β-propeller protein WIPI-1 accumulates at the initiation site for autophagosome formation (phagophore), functions ...

متن کامل

WIPI-Mediated Autophagy and Longevity

Autophagy is a lysosomal degradation process for cytoplasmic components, including organelles, membranes, and proteins, and critically secures eukaryotic cellular homeostasis and survival. Moreover, autophagy-related (ATG) genes are considered essential for longevity control in model organisms. Central to the regulatory relationship between autophagy and longevity is the control of insulin/insu...

متن کامل

Phospholipase C-Related Catalytically Inactive Protein Participates in the Autophagic Elimination of Staphylococcus aureus Infecting Mouse Embryonic Fibroblasts

Autophagy is an intrinsic host defense system that recognizes and eliminates invading bacterial pathogens. We have identified microtubule-associated protein 1 light chain 3 (LC3), a hallmark of autophagy, as a binding partner of phospholipase C-related catalytically inactive protein (PRIP) that was originally identified as an inositol trisphosphate-binding protein. Here, we investigated the inv...

متن کامل

WIPI proteins: essential PtdIns3P effectors at the nascent autophagosome.

Autophagy is a pivotal cytoprotective process that secures cellular homeostasis, fulfills essential roles in development, immunity and defence against pathogens, and determines the lifespan of eukaryotic organisms. However, autophagy also crucially contributes to the development of age-related human pathologies, including cancer and neurodegeneration. Macroautophagy (hereafter referred to as au...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2012  شماره 

صفحات  -

تاریخ انتشار 2012